Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5-fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5-fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5-fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5-fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5-fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5-fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5-fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5-fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5-fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

Easy

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of line segments.

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

The aperiodic 5 -fold tiling in this puzzle is named for Sir Roger Penrose, who discovered it. Special thanks to Craig Kaplan for assistance.

\#14

\#27

