Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough
$\therefore 3$.

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

$$
223
$$

$$
2^{2} \quad 23
$$

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

$$
3
$$

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough
2.
$\begin{array}{llllllll} & 2\end{array}$

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

$$
\therefore 2
$$

$$
\text { 2, } 1
$$

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough
Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

$$
2
$$

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystallographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

$$
322,3
$$

$$
\begin{array}{r}
312202 \\
1212
\end{array}
$$

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

Tough

Fill in some of the dotted line segments to form a meandering path that forms a single loop. The path does not cross itself, branch, or touch itself at corners. The numbers indicate how many line segments surround each cell. Empty cells may be surrounded by any number of lines segments (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You may find it helpful to mark segments that cannot be filled in.

These tiles are named for crystalographer Fritz Laves. Special thanks to Craig Kaplan for suggesting their use.

KRAZYDAD.COM

